63 research outputs found

    Understanding Carbon Cycling of Terrestrial Ecosystems as a Fuzzy System

    Get PDF
    We outline a methodology of full and verified carbon account of terrestrial ecosystems (FCA) that supposes unbiased assessment of relevant proxy values (here: Net Ecosystem Carbon Budget) and reliable estimation of uncertainties. The FCA is a fuzzy (underspecified) system, of which membership function is inherently stochastic. Thus, any individually used method of FCA is not able to estimate structural uncertainties, that is why usually reported “within method” uncertainties are inevitably partial. Attempting at estimation of “full uncertainties” of the studied system we combine the major methods of terrestrial ecosystems carbon account (landscape-ecosystem method, LEA; process-based models; eddy covariance; and inverse modeling). Assessment of the uncertainties of FCA is provided within each method. Landscape-ecosystem approach (LEA) presents the empirical basis of the FCA in form of an Integrated Land Information System; serves for strict systems designing the account; contains all relevant empirical and semi-empirical data and models. By-pixel parametrization of land cover is provided by utilizing multi-sensor remote sensing data within Geo-Wiki platform and other relevant information based on special optimization algorithms. Major carbon fluxes within the LEA (NPP, HR, disturbances, etc.) are estimated based on fusion of empirical data with process-based elements by sets of regionally distributed models. “Within method” results and uncertainties of the methods examined are harmonized and mutually constrained based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000-2010; uncertainties of the FCA for individual years were estimated in limits of ±25%, CI 0.9. We discussed strengths and weaknesses of the approach; system requirements to different methods of the FCA, information and research needs; unresolved problems of cognition of fuzzy system; and obtained and potential levels of uncertainties

    Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    Get PDF
    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000-2012. It has been shown that the Net Ecosystem Carbon Budget (NECB) of Russian forests for this period was in range of 0.5-0.7 Pg C yr-1 with a slight negative trend during the period due to acceleration of disturbance regimes and negative impacts of weather extremes (heat waves etc.). Uncertainties of the FCA for individual years were estimated at about 25% (CI 0.9). It has been shown that some models (e.g. majority of DGVMs) do not describe some processes on permafrost satisfactory while results of applications of ensembles of inverse models on average are closed to empirical assessments. A most important conclusion from this experience is that future improvements of knowledge of carbon cycling of Northern Eurasia forests requires development of an integrated observing system as a unified information background, as well as systems methodological improvements of all methods of cognition of carbon cycling

    Dynamics of the area of tree cover in the Moscow region for the years 2000-2013 (in Russian)

    Get PDF
    A number of modern products of remote sensing demonstrate significant changes in the forest cover in the Moscow region since the beginning of the current century. We have set a goal to test how the system works in both urban and suburban ecosystems, and to identify the main reasons and effects of changes in the forest cover area within the boundaries of one region. The estimation included not only forest plantations but gardens, parks and other areas covered with woody vegetation with the crown density percentage of above 30 %. The instrument to do it was the internet portal Geo-Wiki, which provides highresolution photos from Google Earth and the means for them to visual interpretation. In addition to automatic description of the state of the sector in different years, the network for spot checks by a team of image interpreters has been set up. We have examined the changes of tree plantations in Moscow, in the Moscow region as a whole, and in the Moscow educational and experimental forestry. Our special attention has been paid to the comparison of the obtained data with the official statistics taken from the forest plan of the Moscow region. The total loss of tree cover was streamlined into such groups as: logging, lost plantations (due to forest fires and outbreaks of pests or diseases), transfer of land to the other types of use (e.g. infrastructure projects or arable and agricultural lands). The areas of newly emerged tree plantations have been divided into reforestation and afforestation. The conclusions concerning the loss of areas covered with tree plantations have been formulated, and the possible reasons, which caused it, have been identified

    Current state of forest mapping with Landsat data in Siberia

    Get PDF
    We review a current state of a forest type mapping with Landsat data in Siberia. Target algorithm should be based on dynamic vegetation approach to be applicable to the analysis of the forest type distribution for Siberia, aiming at capability of mapping Siberian forest landscapes for applications such as predicting response of forest composition to climate change. We present data for several areas in West Siberian middle taiga, Central Siberia and East Siberia near Yakutsk. Analysis of the field survey, forest inventory data was made to produce forest type classification accounting for several stages for forest succession and variations in habitats and landforms. Supervised classification was applied to the areas were the ground truth and inventory data are available, including several limited area maps and vegetation survey transects. In Laryegan basin in West Siberia the upland forest areas are dominated by mix of Scots pine on sandy soils and Siberian pine with presence of fir and spruce on the others. Abundance of Scots pine decreases to the west due to change in soils. Those types are separable using Landsat spectral data. In the permafrost area around Yakutsk the most widespread succession type is birch to larch. Three stages of the birch to larch succession are detectable from Landsat image. When Landsat data is used in both West and East Siberia, distinction between deciduous broad-leaved species (birch, aspen, and willow) is generally difficult. Similar problem exist for distinguishing between dark coniferous species (Siberian pine, fir and spruce). Image classification can be improved by applying landform type analysis, such as separation into floodplain, terrace, sloping hills. Additional layers of information can be a promising way to complement Landsat data

    Improved Vote Aggregation Techniques for the Geo-Wiki Cropland Capture Crowdsourcing Game

    Get PDF
    Crowdsourcing is a new approach for solving data processing problems for which conventional methods appear to be inaccurate, expensive, or time-consuming. Nowadays, the development of new crowdsourcing techniques is mostly motivated by so called Big Data problems, including problems of assessment and clustering for large datasets obtained in aerospace imaging, remote sensing, and even in social network analysis. By involving volunteers from all over the world, the Geo-Wiki project tackles problems of environmental monitoring with applications to flood resilience, biomass data analysis and classification of land cover. For example, the Cropland Capture Game, which is a gamified version of Geo-Wiki, was developed to aid in the mapping of cultivated land, and was used to gather 4.5 million image classifications from the Earth’s surface. More recently, the Picture Pile game, which is a more generalized version of Cropland Capture, aims to identify tree loss over time from pairs of very high resolution satellite images. Despite recent progress in image analysis, the solution to these problems is hard to automate since human experts still outperform the majority of machine learning algorithms and artificial systems in this field on certain image recognition tasks. The replacement of rare and expensive experts by a team of distributed volunteers seems to be promising, but this approach leads to challenging questions such as: how can individual opinions be aggregated optimally, how can confidence bounds be obtained, and how can the unreliability of volunteers be dealt with? In this paper, on the basis of several known machine learning techniques, we propose a technical approach to improve the overall performance of the majority voting decision rule used in the Cropland Capture Game. The proposed approach increases the estimated consistency with expert opinion from 77% to 86%

    Comparison of Data Fusion Methods Using Crowdsourced Data in Creating a Hybrid Forest Cover Map

    Get PDF
    Data fusion represents a powerful way of integrating individual sources of information to produce a better output than could be achieved by any of the individual sources on their own. This paper focuses on the data fusion of different land cover products derived from remote sensing. In the past, many different methods have been applied, without regard to their relative merit. In this study, we compared some of the most commonly-used methods to develop a hybrid forest cover map by combining available land cover/forest products and crowdsourced data on forest cover obtained through the Geo-Wiki project. The methods include: nearest neighbour, naive Bayes, logistic regression and geographically-weighted logistic regression (GWR), as well as classification and regression trees (CART). We ran the comparison experiments using two data types: presence/absence of forest in a grid cell; percentage of forest cover in a grid cell. In general, there was little difference between the methods. However, GWR was found to perform better than the other tested methods in areas with high disagreement between the inputs

    Global forest management certification: future development potential

    Get PDF
    • …
    corecore